
COMP 110/L Lecture 3
Mahdi Ebrahimi

Some slides adapted from Dr. Kyle Dewey



Outline

• Introduction

• Types (int and String)

• String concatenation

• Variables

• User input



Introduction

• Java is one of the world’s most widely used computer programming 

languages. 

• You’ll learn to write instructions in the Java programming language

• Computer Programs are step by step instruction that tell computers to 

perform tasks.

• Software: Set of programs that tell computer how to solve specific 

problem



Computer System

• A computer is a digital machine for storing, processing, and retrieving 

information

• Computers can perform calculations and make logical decisions 

phenomenally faster than human beings can.

• Computer System

• Hardware and Software Computers can perform calculations and make logical 

decisions phenomenally faster than human beings can.



5

Hardware

• Physical Components

• A computer consists of a CPU, memory, hard disk, floppy disk, 
monitor, printer, and communication devices.

 

 
CPU 

e.g., Disk, CD, 
and Tape 

Input 
Devices 

e.g., Keyboard, 
Mouse 

e.g., Monitor, 
Printer 

Communication 
Devices 

e.g., Modem, 
and NIC 

Storage 
Devices 

 
Memory 

Output 
Devices 

Bus 



Software

• Computers process data under the control of sequences of 
instructions called computer programs.

• Computer Programs: Set of step-by-step instructions that tell 
computer how to solve a specific problem,

• Software: Collection of computer programs



Software classification

3-7



• User Interface: Communicates with users
• Text based (Shell)
• Graphical user interface (GUI)

• Kernel: Performs basic required functions
• File manager
• Device drivers
• Memory manager
• Scheduler and dispatcher

Operating System Components

3-8



Check Point

• What are hardware and software?
• List the five major hardware components of a computer.
• What does the acronym CPU stand for? What unit is used to measure 

CPU speed?
• What is a bit? What is a byte?
• What is memory for? What does RAM stand for? Why is memory 

called RAM?
• What is the primary difference between memory and a storage device



10

Programming Languages
Machine Language    Assembly Language      High-Level Language

• Any computer can directly understand only its own machine 
language, defined by its hardware design.
– Generally consist of strings of numbers (ultimately reduced to 1s and 0s) 

that instruct computers to perform their most elementary operations one at a 
time.

– Machine dependent—a particular ma-chine language can be used on only 

one type of computer.

– For example, to add two numbers, you might write an instruction in binary 
like this:

1101101010011010



11

Programming Languages
Machine Language    Assembly Language High-Level Language

• Assembly languages were developed to make 
programming easy. 

• English-like abbreviations that represent elementary 
operations  formed the basis of assembly languages.

• Translator programs called assemblers convert early 
assembly-language programs to machine language.

• For example, to add two numbers, you might write an 
instruction in assembly code like this:

ADDF3 R1, R2, R3



12

Programming Languages
Machine Language    Assembly Language      High-Level Language

• The high-level languages are English-like and easy to 
learn and program. 

• Single statements accomplish substantial tasks.

• A Java program to calculate the area of a circle might 
contain a single statement such as

area = radius * radius * Math.PI;

• High-Level programs must be converted to Machine 
Language.



13

Interpreting/Compiling Source Code

• A program written in a high-level language is called a 

source program or source code. Because a computer 

cannot understand a source program, a source program 

must be translated into machine code for execution. 



14

Compiling Source Code

• A compiler translates the entire source code into a machine-code file, 
and the machine-code file is then executed, as shown in the following 
figure.

• Compiling a high-level language program into machine language can 
take considerable computer time.



15

Interpreting Source Code
• Interpreter programs, developer to execute high-level language 

programs directly, avoid the delay or compilation, although 

they run slower than compiled programs.



16

Popular High-Level Languages
 

Language      Description                  

 
Ada 
 

BASIC 
 

C 

C++ 

C# 

COBOL 

FORTRAN 

Java 

Pascal 

Python 

Visual 
Basic 

 

Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada 
language was developed for the Department of Defense and is used mainly in  d efense projects. 

Beginner’s All-purpose Symbolic Instruction  Code. It was designed to be learned and used easi ly 
by beginners. 

Developed at Bell  Laboratories. C combines the power of an assembly language with the ease of 
use and portability of a high-level language. 

C++ is an object-oriented language, based  on C. 

Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft . 

COmmon Business Oriented Language. Used for business applications.         

FORmula TRANslation. Popular for scienti fic and  mathematical  applications. 

Developed by Sun Microsystems, now part of Oracle. It  is widely used for developing platform-
independent Internet app lications. 

Named for Blaise Pascal, wh o pioneered calculating machines in the seventeenth century. It is a 
simple, s tructured, general-purpose language p rimarily for teaching programming. 

A simple general-purpose scripting language good for writing short programs . 

Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop 
graphical user interfaces. 

 



Check Point

• What language does the CPU understand?
• What is an assembly language? What is an assembler?
• What is a high-level programming language? What is a source program?
• What is an interpreter? What is a compiler?
• What is the difference between an interpreted language and a compiled 

language?



18

Java

• Java was developed by a team at Sun Microsystem led by James Gosling

• Based on C++ object-oriented programming language

• Java can be used to develop standalone applications.

• Java can be used to develop applications running from a browser.

• Java can also be used to develop applications for hand-held devices.

• Java can be used to develop applications for Web servers.

• Using Java, you can write programs that will run on a great variety of computer systems 

and computer-controlled devices. This is sometimes called “write once, run anywhere.”



Java (Cont.)

Java Class Libraries
• Rich collections of existing classes and methods 
• Also known as the Java APIs (Application Programming Interfaces). 



20

Java Development Environment

Edit Compile Load  Verify  Execute



Java Development Environment (Cont.)

• Linux systems - vi and emacs
• Windows - Notepad. 
• macOS - TextEdit. 
• Many freeware and shareware editors are also available online

• Notepad++ (http://notepad-plus-plus.org)
• EditPlus (http://www.editplus.com)
• TextPad (http://www.textpad.com)
• jEdit (http://www.jedit.org) and more.



Java Development Environment (Cont.)

• Integrated development environments (IDEs) provide tools that support the 
software development process, such as editing, compiling, debugging, and 
executing. 

• Some Java IDEs are:
• JGrasp (http://www.jgrasp.org)
• Eclipse (http://www.eclipse.org)
• NetBeans (http://www.netbeans.org)



Java Development Environment (Cont.)

• Compiling a Java Program into Bytecodes
• Install jdk (Java Development Kit)

• Java SE Development Kit 8 or 9 
(http://www.oracle.com/technetwork/java/javase/overview/index.html)

• Use the command javac (the Java compiler) to compile a program. 
• javac Welcome.java

• Java compiler translates Java source code into bytecodes that 
represent the tasks to execute. (Welcome.class)

• The Java Virtual Machine (JVM)—a part of the JDK and the foundation of the 
Java platform—executes bytecodes.



Java Development Environment (Cont.)
• Bytecodes are portable (platform independent)
• The JVM is invoked by the java command. 

• java Welcome

• The JVM places the program in memory to execute it. (loading .class file)
• As the classes are loaded, the bytecode verifier examines their bytecodes 
• Ensures that they’re valid and do not violate Java’s security restrictions.

• The JVM executes the program’s bytecodes.



Check Point

• What is the Java language specification?
• What does JDK stand for? What does JRE stand for?
• What does IDE stand for?
• Are tools like NetBeans and Eclipse different languages from Java, or 

are they dialects or extensions of Java?



Your First Program in Java: Printing a Line of Text

• Java application
• A computer program that executes when you use the java command to 

launch the Java Virtual Machine (JVM). 

1. /* File: Welcome.java
2. This program prints Welcome to Java! 

3. */
4. public class Welcome {
5. public static void main(String[] args) { 
6. System.out.println( "Welcome to Java!” );
7. } // end main method
8. } // end class Welcome

Block Comments

Line Comments

Java Keywords (blue text)



Your First Program in Java: Printing a Line of Text

1. /* File: Welcome.java
2. This program prints Welcome to Java! 

3. */
4. public class Welcome {
5. public static void main(String[] args) { 
6. System.out.println( "Welcome to Java!” );
7. } // end main method
8. } // end class Welcome

Class Name



Class Names and Identifiers

Class Names and Identifiers

• A class name is an identifier—a series of characters consisting of letters, digits, 
underscores (_) and dollar signs ($) that does not begin with a digit and does 
not contain spaces. 

• Java is case sensitive—uppercase and lowercase letters are distinct—so a1
and A1 are different (but both valid) identifiers.

• By convention, begin with a capital letter and capitalize the first letter of each 
word they include (e.g., SampleClassName). 

• Use meaningful names.



Your First Program in Java: Printing a Line of Text

1. /* File: Welcome.java
2. This program prints Welcome to Java! 

3. */
4. public class Welcome {
5. public static void main(String[] args) {
6. System.out.println( "Welcome to Java!” );
7. } // end main method
8. } // end class Welcome

Blocks



Declaring main Method

• Starting point of every Java application. 
• Parentheses after the identifier main indicate that it’s a program building block 

called a method. 
• Java class declarations normally contain one or more methods. 
• Keyword void indicates that this method will not return any information. 

1. /* File: Welcome.java
2. This program prints Welcome to Java! 

3. */
4. public class Welcome {
5. public static void main(String[] args) { 
6. System.out.println( "Welcome to Java!” );
7. } // end main method
8. } // end class Welcome



System.out.println() Statement
• Instructs the computer to perform an action

• Display the characters contained between the double quotation marks. 
• Together, the quotation marks and the characters between them are a string—also 

known as a character string or a string literal. 
• White-space characters in strings are not ignored by the compiler. 
• Strings cannot span multiple lines of code.
• Most Java statements end with a semicolon. 

1. /* File: Welcome.java
2. This program prints Welcome to Java! 

3. */
4. public class Welcome {
5. public static void main(String[] args) { 
6. System.out.println("Welcome to Java!”);
7. } // end main method
8. } // end class Welcome

Standard output object

Method: Displays (or prints) a line 
of text in the command window

The string in the parentheses the 
argument to the method. 



32

Special Symbols

 
Character Name                   Description                  

 {} 
  

() 
 
[] 
 
// 
 
" " 

 
; 

Opening and closing 
braces 

Opening and closing 
parentheses 

Opening and closing 
brackets 

Double slashes 

Opening and closing 
quotation marks 

Semicolon 

Denotes a block to enclose statements. 
 

Used with methods. 
 

Denotes an array. 
 
Precedes a comment line. 
 
Enclosing a string (i.e., sequence of characters). 
 

Marks the end of a statement. 
 



33

Programming Style and Documentation

• Appropriate Comments
• Naming Conventions
• Proper Indentation and Spacing Lines
• Block Styles

• Make sure to read and apply the following recommendations:
https://mebrahimii.github.io/comp110-fall2020/resources/java_guide/



34

Programming Errors
• Syntax Errors

• Detected by the compiler

• Runtime Errors
• Causes the program to abort

• Logic Errors
• Produces incorrect result



35

Syntax Errors
public class Welcome {

public static main(String[] args) {
System.out.println("Welcome to Java);

}
}



36

Runtime Errors

public class Welcome {
public static void main(String[] args) {
System.out.println(1 / 0);

}
}



37

Logic Errors

public class Circle {

public static void main(String[] args) {

System.out.print(“Area of a circle with radius 5 is “);

System.out.println( 5 * Math.PI );

}

}



Check Point

• What is a keyword? List some Java keywords.
• Is Java case sensitive? What is the case for Java keywords?
• What is a comment? Is the comment ignored by the compiler? How 

do you denote a comment line and a comment paragraph?
• What is the statement to display a string on the console?
• Show the output of the following code:

public class Test { 
public static void main(String[] args) { 

System.out.println("3.5 * 4 / 2 – 2.5 is "); 
System.out.println(3.5 * 4 / 2 – 2.5); 

} 
}



Types



Expressions

• From the last lab, you wrote code like:

•"Hello, world!"

•2 * (1 + 4)

• Each of these is an expression (produces a  
value)



Types

• All values are of a particular type

•"Hello, world!": String

•2 * (1 + 4): int (integers)

•Transitively, all expressions are of a particular  
type



String Concatenation



String Concatenation
Strings can be combined together with the + operator.



String Concatenation
Strings can be combined together with the + operator.

"foo" + "bar"



String Concatenation
Strings can be combined together with the + operator.

"foo" + "bar"

"foobar"



String Concatenation
Strings can be combined together with the + operator.

"foo" + "bar"

"foobar"

"foo" + "bar" + "baz"



String Concatenation
Strings can be combined together with the + operator.

"foo" + "bar"

"foobar"

"foo" + "bar" + "baz"

"foobarbaz"



Demo:
StringConcat.java



Concatenation with int
String concatenation also works with  

Strings and integers (int).



Concatenation with int
String concatenation also works with  

Strings and integers (int).

"foo" + 7



Concatenation with int
String concatenation also works with  

Strings and integers (int).

"foo" + 7  

"foo7"



Concatenation with int
String concatenation also works with  

Strings and integers (int).

"foo" + 7  

"foo7"

"bar" + 28



Concatenation with int
String concatenation also works with  

Strings and integers (int).

"foo" + 7  

"foo7"

"bar" + 28  

"bar28"



Demo:
IntStringConcat.java



2  vs. "2" vs. '2'



Variables



Variables

• Related to variables in math

• A named “box” you can put a value in



Variables
A variable is a container which holds values that are used 
in a Java program.
Do you remember the basic math you learned in school?

y = x + 1
Here, as you can see, the y variable changes when the x 
variable is different. For example:

 if x = 1, then x + 1 = 2
 if x = 2, then x + 1 = 3
 if x = 1.5, then x + 1 = 2.5

In Java, variables play the same role as in the above math 
example: y = x + 1. So, variables are containers that hold 
values.



Variables

• Related to variables in math

• A named “box” you can put a value in



Variables

• Related to variables in math

• A named “box” you can put a value in

num



Variables

• Related to variables in math

• A named “box” you can put a value in

5

num



Variables

• Related to variables in math

• A named “box” you can put a value in

num 5



Variables

num 5

• Related to variables in math

• A named “box” you can put a value in

num?



Variables

num 5

• Related to variables in math

• A named “box” you can put a value in

num?
5



Variables

num 5

• Related to variables in math

• A named “box” you can put a value in

num?
5

Box still holds 5
(in Java)



Getting a Box
In Java, we must declare a variable to get a new box.

Part of this declaration includes the type of the thing  
we want to put into the box.



Getting a Box
In Java, we must declare a variable to get a new box.

Part of this declaration includes the type of the thing  
we want to put into the box.

int num;



Getting a Box
In Java, we must declare a variable to get a new box.

Part of this declaration includes the type of the thing  
we want to put into the box.

int num;

Variable named num, holds values of type int



Getting a Box
In Java, we must declare a variable to get a new box.

Part of this declaration includes the type of the thing  
we want to put into the box.

int num;

Variable named num, holds values of type int

String str;

Variable named str, holds values of type String



Example:
VariableDeclarations.java



Putting Values in theBox
• To put values into variables, we assign into them

• Assignment is performed with =



Putting Values in theBox
• To put values into variables, we assign into them

• Assignment is performed with =

int num;  
num = 7;



Putting Values in theBox
• To put values into variables, we assign into them

• Assignment is performed with =

int num;  
num = 7;

int num = 7;



Retrieving Values from  
the Box

• To get a value out of a variable, we need to
access it

• Variable access is done by referencing a  
variable in an expression context



Retrieving Values from  
the Box

• To get a value out of a variable, we need to
access it

• Variable access is done by referencing a  
variable in an expression context

int num = 7;
int otherNum = num;
int thirdNum = num + otherNum;



Example:
VariableUsage.java



Question

• Variables can have their values reassigned

• Question: what might this code snippet print?

int num = 9;  
num = 12;
System.out.println(num);



Question

• Variables can have their values reassigned

• Question: what might this code snippet print?

int num = 9;  
num = 12;
System.out.println(num);

Answer:12



User Input



Program Input

• Programs without input can’t do much

• Can only produce predetermined values

• We’ll look at one kind of input: user input  
from the console/terminal



Reading in Input
New bit of magic: Scanner



Reading in Input
New bit of magic: Scanner

import java.util.Scanner;

public class Test {  
public static void  
main(String[] args) {
Scanner in =
new Scanner(System.in);

...



Reading in Integers (int)
Scanner in = new Scanner(System.in);  
int first = in.nextInt();
int second = in.nextInt();  
int third = in.nextInt();

// above code reads in
// three integers from the user



Demo:
AddTwo.java



Reading in Text(String)

Scanner in = new Scanner(System.in);  
String firstLine = in.nextLine();  
String secondLine = in.nextLine();

// above code reads in two lines
// of text



Demo:
Parrot.java



Demo:
DoubleParrot.java






